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Abstract

Dynamic behavior of heat transfer\ ~uid ~ow\ and interfaces in the vertical zone!melting "VZM# crystal growth is
studied numerically[ The model\ which is governed by axisymmetric unsteady!state momentum and heat transfer and
interface balance in the system\ is solved by a robust _nite!volume method[ Single crystal growth of NaNO2 in a
computer!controlled transparent multizone furnace is simulated as examples[ The e}ects of gravity levels and heater
temperature are considered[ Multiple steady states obtained at stationary cases are used as initial conditions to illustrate
the transient response and the stability of the VZM crystal growth to the pulse and step changes in thermal environments[
For unstable cases\ periodically oscillatory ~ow and growth rate occurring at intermediate values of the Rayleigh number
are observed[ The upper ~ow cells beneath the feed front seems to be responsible to the instability\ and this is consistent
with the observation during crystal growth experiments[ For stable cases\ a steady state can be achieved smoothly\ and
the calculated results are in good agreement with the ones from a pseudo steady!state model[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

Nomenclature

a width parameter in Ta

Cp speci_c heat
ez unit vector in z!direction
f residual vector
` gravitational acceleration
h heat transfer coe.cient
hc height of growth front
hf height of feed front
I ~ux through the CV faces
k thermal conductivity
L length of ampoule
n unit normal vector
Pr Prandtl number\ n:a
r cylindrical coordinate
Ra Rayleigh number\ bTR

2
c `"Tmax−Tm#:na

Ra radius of ampoule
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Rc radius of crystal
t time
T temperature
Ta ambient temperature distribution
Ta� background ambient temperature
Tm melting point
Tp peak heater temperature
u r!component of velocity
Uheater heater moving speed
U9 ampoule pulling speed
v z!component of velocity
V volume
x solution vector
z cylindrical coordinate[

Greek symbols
a thermal di}usivity
bT thermal expansion coe.cient
o emissivity
h curvilinear coordinate
n kinematic viscosity\ m:rL

m viscosity
j curvilinear coordinate
r density
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s StefanÐBoltzmann constant
c stream function
v vorticity[

Subscripts
a ampoule
f feed
c crystal
L liquid or melt
m melt
max maximum
min minimum
S solid[

0[ Introduction

Modern electronics and communication are based on
various devices in microscale\ and the reliability of these
devices is strongly a}ected by single crystal substrates[
As it is\ the homogeneity of the electrical "or optical#
properties on microscale is required for device fabri!
cation[ It is well known that the convection in the melt
during the production of these crystals can a}ect the
crystal quality signi_cantly[ Particularly\ unstable crystal
growth conditions can lead to ~ow induced striation\ and
thus inhomogeneity\ in the grown crystal[ Accordingly\
heat "mass# transfer and ~uid ~ow during crystal growth
have received considerable research attention in the past
two decades[ To control the crystal growth e}ectively\
understanding of the process dynamics is necessary[

The vertical zone!melting "VZM# technique ð0Ł is one
of the most important processes for crystal growth and
puri_cation\ i[e[\ zone re_ning[ In the VZM process\ crys!
tal growth and zone!re_ning take place as the molten
zone is traveled with a ring heater[ Owing to the radial
heating\ strong buoyancy induced natural convection
could be induced[ Since the melt near the upper melt:solid
interface is cooler\ the unstable thermal convection may
be of importance[ Furthermore\ accompanied by melting
and solidi_cation phenomena\ the dynamic responses of
the process to the changes on thermal environments could
be very complicated[

Even though the VZM has been used to re_ne and to
grow various single crystals for years ð1Ð3Ł\ not many
theoretical studies have been reported[ Some of these
studies are restricted to one!dimensional di}usion models
ð4\ 5Ł in which heat transfer is neglected[ There are only
a few two!dimensional models ð6Ð8Ł that calculated con!
ductive thermal _elds in the VZM crystal growth\ but
crystal growth and ~uid ~ow were not considered[
Recently\ Apanovich and Ljumkis ð09Ł simulated steady!
state convective heat and mass transfer in the traveling
solvent method "TSM# "a variant of VZM# for the crystal
growth of a low Prandtl!number material\ but the
ampoule was neglected[ Land and Yang ð00Ł used a _nite!

volume:Newton method with an implementation of
pseudo arc!length continuation to study the pseudo
steady!state VZM growth of NaNO2\ in which multiple
steady states were also observed[ More interestingly\ it
was observed that the bifurcation of solutions is
accompanied by the inversion of the upper interface[
Lan and Yang also extended the simulation to the mass
transfer and constitutional supercooling in the TSM
growth of CdTe crystals from Te solution ð01Ł[ However\
dynamic behavior of the VZM process has not yet been
reported[ Even though in most cases the process could
achieve a pseudo steady!state very quickly after the crys!
tal growth starts\ at the initial stage of crystal growth
and the onset of unstable convection\ the process is still
dynamic in nature[ In other words\ a pseudo steady!
state model "PSSM# may not be adequate to describe the
system[

The main purpose of this paper is to study the dynamic
behavior of VZM crystal growth from various basic
states[ Time evolution of axisymmetric ~ow structures
and growth rates will be illustrated through computer
simulation[ Some of the results may also give some expla!
nations for the phenomena observed during crystal
growth experiments[ The VZM growth of NaNO2 in a
transparent multizone furnace ð02Ł will be used as exam!
ples[ Although unsteady!state three!dimensional ~ow
were observed at some growth conditions in our crystal
growth experiments\ axisymmetric results could still be
useful\ and provide some conservative prediction of the
instability[ Moreover\ since NaNO2 is a high Prandtl!
number material "Pr � 8[1#\ the interaction of thermal
convection and interface shapes\ which is interesting to
us\ is expected to be signi_cant[

1[ Mathematical formulation

The VZM growth of NaNO2 single crystals is simulated
using a transient model[ If heating is axisymmetric\ the
physical domain for the feed\ the melt zone\ the crystal\
and the ampoule can be taken as shown in Fig[ 0[ As it
is\ it may be treated as a two!dimensional model[ It
should be pointed out that three!dimensional ~ow was
observed in some growth conditions[ However\ cal!
culations of three!dimensional unsteady ~ow in this
moving boundary problem are time consuming\ and
beyond the capability of present approach[ The RHS of
Fig[ 0 shows an e}ective ambient temperature dis!
tribution for computation[ During crystal growth exper!
iments\ this temperature distribution is assigned to the
inner wall of the transparent furnace[ The ~ow and tem!
perature _elds\ as well as the shapes of the feed front "the
feed:melt interface\ hf"r\ t## and the growth front "the
melt:crystal interface\ hc"r\ t##\ are represented in cyl!
indrical coordinate system "r\ z#[

In this report\ the melt is assumed incompressible and
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Fig[ 0[ Schematic sketch of the vertical zone!melting "VZM#
crystal growth process ^ the RHS is an e}ective ambient tem!
perature distribution[

Newtonian\ while the ~ow is laminar[ The Boussinesq
approximation is also adopted[ If the stream function c

and vorticity v are de_ned in terms of radial "u# and axial
"v# velocities as ð03Ł ]

u � −
0

rLr
1c

1z
\ v �

0
rLr

1c

1r
"0#

and

v �
1u
1z

−
1v
1r

"1#

the governing equations in the conservative!law form "or
the so!called divergence form# for unsteady!state ~uid
~ow and heat transfer in the system can be written as
follows ]

Equation of motion
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Stream equation
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Ener`y equation
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where m is the viscosity\ ri the density\ Cpi the speci_c heat\
and ki the thermal conductivity of phase i ^ i represents the
melt "L#\ the crystal or feed "S#\ and the ampoule "a#[
Also ` is the gravitational acceleration and bT the thermal
expansion coe.cient of the melt[ Also\ the associated
Rayleigh number Ra can be de_ned as bTR

2
c `"Tmax−Tm#:

"na#\ where Tmax is the maximum temperature in the zone\
Tm the melting point\ n � m:rL\ and a � kL:"rLCpL#[ All
the physical properties used in Ra are obtained at Tm[
Furthermore\ since Tmax is unknown a priori\ Ra should
be obtained from the solution[

The thermal boundary conditions are as follows ]

"0# Along the centerline\

1T:1r � 9 "5#

due to symmetry[
"1# At the feed "f # and crystal "c# growth fronts\ the

interfacial energy balance is

k"n =9T#=i−k"n =9T#=L¦rSDH 0
1hi

1t
¦U91 n = ez � 9\

i � " f\ c# "6#

where n is the unit normal vector pointing into the
feed or the crystal and DH the heat of fusion[ The
temperature at feed and growth fronts is set to the
equilibrium melting point of the crystal ]

T = f � T =c � Tm[ "7#

"2# At the material:ampoule interface\ the energy bal!
ance is

k"n =9T#=i−k"n =9T#=a � 9\ i � " f\ L\ c# "8#

where n is the unit normal vector pointing into the
ampoule[
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"3# Heat transfer from the system to the ambient is by
both radiation and convection according to the
energy balance along the ampoule surface ]

−ka"n =9T# � h"T−Ta#¦oas"T3−T3
a# "09#

where h is the heat transfer coe.cient\ oa the thermal
emissivity of the ampoule\ s the StefanÐBoltzmann
constant\ and Ta the e}ective ambient temperature[

"4# At the top of the sample\ an adiabatic condition is
used\

n =9T � 9[ "00#

Heat loss from the top surface can be added if neces!
sary[

Heat exchanges between the surrounding "furnace# and
the ampoule are dictated by the e}ective ambient tem!
perature Ta"z# speci_ed along the zone length[ The e}ec!
tive ambient temperature distribution due to the furnace
is speci_ed as follows ]

Ta"z\ t# � "Tp−Ta�# exp "−ð"z−zp#:aŁ1#¦Ta� "01#

and

zp � zp9¦Uheater "02#

where Tp and Ta� are the peak and background tem!
peratures\ respectively\ the parameter a is related to the
width of the distribution\ and zp is the position of Tp[
Also\ zp9 is the initial position of Tp[ The heating pro_le
according to equation "01# can be generated in the com!
puter!controlled multizone furnace easily ð02Ł[

The ~uid!~ow boundary conditions are as follows ]

"0# Along the centerline

c � 9\ v � 9 "03#

where c is set to zero as a reference[
"1# At the feed and growth fronts\

c � 0
1
rSU9r

1

v �
1u
1z

−
1v
1r

"04#

with

u � 9\ v � U9rS:rL[ "05#

Also\ U9 is negative here if the ampoule is pulled
downwards[

"2# At the melt:ampoule interface\

c �
0
1

rSU9R
1
c \ v �

1u
1z

−
1v
1r

"06#

with

u � 9\ v � U9rS:rL "07#

where Rc is the crystal radius "see Fig[ 0#[

2[ Solution procedure

The above governing equations and boundary con!
ditions are transformed into those in terms of general
"nonorthogonal# curvilinear coordinates "h\ j# which _t
all the interfaces\ as shown in Fig[ 1[ In this way\ all the
boundary conditions can be treated accurately\ as already
described previously ð04Ł[

The equation of motion\ the stream equation\ and the
energy equation ðequations "2#Ð"4#Ł are discretized by
employing a _nite!volume method[ The physical domain\
in "r\ z#\ is subdivided into a _nite number of contiguous
volumes "CVs# of volume V\ which are bounded by cell
faces located about halfway between consecutive nodal
points[ For any CV with volume V in this domain can be
transformed into a computation domain "h\ j# with a CV
of volume V?\ and dV � J dV?\ where J is the Jacobian
of coordinate transformation "J � rhzj−rjzh#[ Now\ the
integration of these equations over the CV can proceed
as follows ]

gV

ðequations "2#Ð"4#Ł dV[ "07#

After the Gauss theorem is applied\ the above equation
can be transformed into surface integrals "~uxes# over
the surface of the CV[ The resulting balance equations
for each CV can then be expressed as

Ieast−Iwest¦Inorth−Isouth¦gV? 0−b?
1f

1t br\z¦d1 J dh dj � 9

"08#

and

1f

1t br\z �
1f

1t bh\j

¦
0
J $"rjfh−rhfj# 0

1z
1t bh\j1

−"zjfh−zhfj# 0
1r
1t bh\j1% "19#

where f is the _eld variables "i[e[\ v\ f\ and T#\ d the
source terms in the governing equations\ b? the cor!
responding coe.cient for time derivative of f\ and Ii

represents the total ~ux of f across the face i of the CV[
The second term on the RHS of equation "19# is due to
the moving coordinate in the physical domain[ Equation
"08# involves no approximation and represents the _nite!
volume equations of the di}erential equations[ Numeri!
cal evaluation of the di}erent terms in equation "08#
requires the calculation of geometrical factors for the CVs
and a discretization scheme for interpolating quantities at
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Fig[ 1[ A nonorthogonal body!_tted coordinate system used for computation ] "a# physical domain ^ "b# computational domain[ The
heavy lines indicate the interfaces in the computational domain[

the cell faces from their adjacent nodal values[ The details
of the discretization scheme can be found elsewhere ð04Ł[
In addition\ the boundary conditions are discretized by
second order _nite di}erences[

After the discretization for both governing and bound!
ary conditions\ a set of di}erential:algebraic equations
"DAEs# can be obtained ]

f 0x\
dx

dt
\ t1� 9 "10#

where xT � "c\ v\ T\ hf\ hc#[ The formulation of the DAEs
is then completed by specifying an initial condition
"t � 9# on the stream function\ vorticity\ temperature\
and the interface shapes[ The solution at a stationary
state\ in which the ampoule and the ambient temperature
pro_le are both kept stationary\ is taken as the initial
condition[ The stationary state is solved by Newton|s
method\ and the detailed description can be found else!
where ð00Ł[ To solve the DAEs\ a fully implicit time inte!
gration code DASPK ð05Ł "a variant of DASSL ð06Ł# is
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used[ In the DASPK code\ nonlinear equations involved
in each time step are solved by an inexact Newton method
based on the Krylov subspace iterative approach ð07Ł[
The incomplete LU decomposition without _ll!in
"ILU"9## ð08Ł of the Jacobian matrix from equation "10#
is used as the preconditioner during inexact Newton|s
iterations[ The components of the Jacobian matrix J½\
formed by explicit di}erentiation as J½ij 0 1fi:1xj\ rep!
resent the sensitivity of the residual vector to the solution
vector\ and are obtained by _nite!di}erence approxi!
mations with the consideration of the sparse structure of
J½ ð19Ł[ Since the Krylov subspace method is adopted in
the solution phase\ the choice of the preconditioner is
crucial to the success of DASPK[ In addition\ the con!
sistence of the initial condition is also sensitive to this
DAE solver[

3[ Results and discussion

The calculated results are based on the physical proper!
ties and some input parameters in Table 0[ According to
the table\ the Prandtl number "Pr � mCpL:kL# for NaNO2

Table 0
Physical properties and some input parameters ð00Ł

NaNO2

Tm � 295[7>C
DH � 071 J g−0

ks � 4[54×09−2¦22[4"T−129#×09−6 W cm−0 >C−0

kL � 4[54×09−2¦33[6"T−Tm#×09−6 W cm−0 >C−0

CpS
� CpL

� 0[144¦1[07"T−099#×09−2 J g−0 >C−0

m � 9[9291−0[422×09−3"T−Tm# g cm−0 s−0

bT � 5[5×09−3 >C−0

rS � 1[007 g cm−2

oL � 0[893 g cm−2

Ampoule "glass#
ka � 9[924 W cm−0 >C−0

Cpa
� 9[077 J g−0 >C−0

ra � 1[1 g cm−2

oa � 9[6

Some input parameters
Rc � 9[614 cm
Ra � 9[8 cm
L � 09 cm
zp9 � 4[0 cm
Tp � 249 or 279>C
Ta� � 079>C
a � 0[5 cm
h � 0[5×09−1 W cm−1 >C−0

U9 � 9 cm h−0

Uheater � 0 cm h−0

is rather high\ i[e[\ around 8[1 at the melting point
"295[7>C#[ Before calculated results are presented\ mesh
re_nements are also performed to examine discretization
errors[ Two meshes are tested in the study[ The coarser
mesh has 15×65 grid points\ which leads to totally 2089
nonlinear equations[ The _ner mesh\ as shown in Fig[ 1\
has 25×75 grid points and has up to 4419 nonlinear
equations[ In details\ the grids are 20×10 in the feed\
20×30 in the melt\ 20×10 in the crystal\ and the rest of
grids in the ampoule[ Calculated results "~ow patterns\
isotherms\ and the growth rate curve# for a case under
normal gravity "Tp � 249>C and Uheater � 0 cm h−0# based
on the two meshes are very close to each other "the
di}erence on the maximum of temperature is within 0)#[
Since a calculation with the _ner mesh "if the system is
stable# takes only about 29 CPU minutes in HP8999:624
workstation\ the _ner mesh is chosen for all the cal!
culations here[

Before transient results are presented\ the initial con!
ditions are discussed _rst[ Figure 2 shows the variation of
zone length "measured at the centerline# with the gravity
level ^ the solutions from the pseudo steady!state model
"PSSM# ð00Ł is indicated by the dashed!line[ As shown\
the zone length increases rapidly with the increasing grav!
ity[ Since the gravity is the only driving force for con!
vection in the melt\ Fig[ 2 can be seen as the e}ect of
convection on the molten zone size[ More interestingly\
there are multiple steady states near the gravity level
around 9[97 `[ The corresponding ~ow patterns and iso!
therms are also illustrated ^ the upper ~ow cell is antic!
lockwise while the lower one is clockwise in direction[ The
values for the maximum temperature "Tmax#\ maximum
"cmax# and minimum "cmin# stream functions are listed in
Table 1[ The associated Ra number is also included for
reference[ In fact\ as discussed in the previous report ð00Ł\
the bifurcation is accompanied by the inversion of the
upper melt:solid interface[ Similar bifurcation behavior
can be found in Czochralski crystal growth ð10Ł\ in which
the cold boundary "the melt:crystal interface# is on the
top[ We have also conducted the calculations for the cases
with {_xed| interfaces[ However\ no similar bifurcation
behavior is observed[ Since the dynamic response of the
multiple steady states to the change of thermal environ!
ments could be interesting\ solutions "or the so!called
basic states# aÐc in Fig[ 2 are chosen as initial conditions[

The dynamic response of the basic states aÐc is illus!
trated _rst for a pulse disturbance[ The disturbance is
implemented through a pulse increase on the peak heater
temperature "Tp"t# �Tp"9#¦4 sin "t# for t ¾ p#[ The
dynamic response of zone length for the basic states aÐc
is shown in Fig[ 3[ As shown\ the basic state c still remains
at its original state\ and is not a}ected by the disturbance
much[ On the contrary\ for the states a and b\ they do
not stay at their original states\ and their zone length is
changing with time until a new steady state is reached[
Interestingly\ the new stable state appears to be the basic
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Fig[ 2[ E}ect of gravity levels on the zone length ^ Tp � 279>C[

state c[ More importantly\ the response of the growth
rate "Fig[ 4# are oscillatory for both states a and b[ In
fact\ the cyclic melting "dhc:dt ³ 9# and growth
"dhc:dt × 9# could be responsible to the striation during
crystal growth[ Although the amplitude of the oscillation
for both basic states a and b decays to zero eventually\
the oscillation can sustain up to 399 s[ The detailed
response of the growth rate at the _rst 099 s is also
highlighted in the same _gure[ It can be clearly seen that
the growth rate for the state c is not oscillatory at all\ and
it returns to zero in 19 s[ The Ra for all of the cases is
about 0[7×094\ which is much smaller than the critical
Ra "¼0×096# reported for the simulated VZM system
using water as a model ~uid ð11Ł[ The response of a basic
state at higher Ra in Fig[ 2 is similar to the basic state c[

The dynamic response of these basic states to the step

change of the heater moving speed "to start up crystal
growth# may also be interesting ^ Uheater is changed from
9 to 0 cm h−0 upwards[ Figure 5 shows the response of
the growth rate for the state a[ As shown\ the system does
not respond until the change in the thermal environments
is substantial[ Interestingly\ as the system senses the
change\ the response\ for both the growth rate and the
~ow patterns\ is oscillatory with time periodically[ The
oscillation pattern is similar to that in Fig[ 4[ From the
associated ~ow patterns and isotherms indicated from
points bÐf "a period#\ it is clear that the periodic growth
or melting is mainly due to the oscillatory ~ow[ From the
~ow patterns\ it can be seen that the upper ~ow cell moves
back and forth horizontally from bÐf\ and the lower cell
is induced to move up and down[ The unstable upper
cell\ presumably\ may be due to the unstable thermal
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Table 1
Calculated stream function\ and Ra

Cmin "×091# Cmax "×092#
Figures ðg s−0Ł ðg s−0Ł Tmax ð>CŁ Ra "×09−4#

Fig[ 2a −0[67 2[02 234[06 0[702
Fig[ 2b −0[78 4[23 233[71 0[686
Fig[ 2c −0[74 00[7 233[30 0[667
Fig[ 5b −0[88 3[16 233[54 0[678
Fig[ 5c −1[31 0[81 233[13 0[658
Fig[ 5d −1[11 9[40 233[40 0[671
Fig[ 5e −0[24 00[4 233[28 0[665
Fig[ 5f −0[87 3[05 233[50 0[676
Fig[ 6b −0[60 0[96 234[06 1[932
Fig[ 6c −1[90 3[69 233[59 0[675
Fig[ 6d −0[41 8[60 233[56 0[689
Fig[ 6e −0[63 09[9 234[99 0[794
Fig[ 7b −0[47 2[13 233[71 0[723
Fig[ 7c −0[47 2[12 234[51 0[724
Fig[ 8a −1[13 9[91 219[36 9[083
Fig[ 8b −1[80 9[31 219[13 9[270
Fig[ 8c −1[72 0[89 219[26 9[530
Fig[ 09b −2[04 0[97 219[19 9[522
Fig[ 09c −2[46 9[16 219[09 9[518
Fig[ 01a −2[21 3[99 214[30 9[768
Fig[ 01b −2[35 3[98 214[18 9[762
Fig[ 01c −3[02 09[5 213[72 9[741
Fig[ 04b −3[97 3[01 213[25 9[729
Fig[ 04c −2[18 8[49 213[41 9[726
Fig[ 04d −3[93 3[39 213[15 9[714
Fig[ 04e −2[18 8[45 213[37 9[725
Fig[ 05b −3[03 4[17 213[26 9[729
Fig[ 05c −2[24 09[9 213[45 9[728
Fig[ 05d −3[09 4[41 213[18 9[716
Fig[ 05e −2[24 09[0 213[41 9[726
Fig[ 06b −3[23 6[68 213[17 9[715
Fig[ 06c −2[54 06[1 213[43 9[727
Fig[ 06d −3[20 7[11 213[15 9[714
Fig[ 06e −2[56 06[9 213[42 9[727

con_guration ^ the cold boundary "the feed front# is on
the top[ Isotherm variation due to the ~ow is also very
obvious[ However\ due to the short growth time\ the
change on the interfaces are invisible[ Since the heater is
moved upward\ the mean growth rate should increase
upwards as well ^ dhc:dt � Uheater if a steady state is
achieved[ Unfortunately\ due to the oscillatory behavior
while we need to maintain the accuracy of the solution
at each time step\ we were not able to obtain a steady!
state solution in a reasonable CPU time[ Again\ the
dynamic response of the basic state b also exhibits a
similar behavior "Fig[ 6#\ but as is the case in Fig[ 4 the
amplitude of the periodic oscillation is smaller[ Fur!
thermore\ the upper cell now moves up and down rather
than left and right[ The period for both cases a and b is

about 5[7 s[ On the contrary\ the basic state c is stable\
and the oscillatory behavior does not exist[ As shown in
Fig[ 7\ the system achieves a steady state smoothly[ The
feed front changes from concave to ~at\ while the growth
front from slightly convex to concave[ Furthermore\ the
new state c at Fig[ 7 is consistent with the solution from
a PSSM "point c? in Fig[ 2#[ In fact\ since the basic state
c? in Fig[ 2 is a unique stable solution at the growth rate
of 0 cm h−0\ we anticipate that it may also be the _nal
steady state for the basic states a and b to the step change
on Uheater[

When the molten zone is short at a lower heater tem!
perature "Tp � 249>C#\ no bifurcation occurs with the
increasing gravity "Fig[ 8#[ In fact\ the Ra for the cases in
Fig[ 8 is less than 0×094 "see Table 1#[ The step response
of the basic state c "at 0 `# is shown in Fig[ 09[ Again\
since it is stable\ a steady state is smoothly achieved\ in
which dhc:dt � Uheater[ Interestingly\ an inverse response
of the growth rate "from points a to b in Fig[ 09# is
observed[ Indeed\ in such a complicated system there are
many associated time constants and their values may
vary signi_cantly[ For example\ the time constant for
heat conduction is quite di}erent from that for ~uid ~ow[
Therefore\ as the heater moves upwards\ the faster mode
"convective heat transfer# tends to melt back the growth
front "negative dhc:dt#[ However\ as the heater moves
upwards more\ the slower mode "heat conduction# can
then respond more signi_cantly to exhibit the positive
growth rate[ Figure 00 gives a simple comparison of the
steady state results from Fig[ 09 and the PSSM ð00Ł[ As
shown\ the PSSM is a good approximation to the system[
The smaller di}erence in the stream function is simply
due to the di}erent boundary conditions used[ Further!
more\ the calculated ~ow patterns and interface shapes
shown in Fig[ 00 are also compared with those from the
laser light!cut technique\ and they are in good agreement[
The detailed comparison is discussed elsewhere ð02Ł[

Similar bifurcation behavior can also be obtained by
tracking the solution family using Tp as a parameter[ As
shown in Fig[ 01\ under normal gravity condition
multiple steady states also appear for both stationary and
growth cases around Tp � 0[974Tm[ Also\ the bifurcation
structure is more complicated\ and there are four turning
points ð12Ł[ The zone length for both stationary and
growth cases are very close to each other for a wide range
of Tp except for the range with multiple steady states[
The ~ow patterns and isotherms for multiple steady states
at Tp � 0[974Tm "labeled by aÐc# are also illustrated[ The
basic state at a? is the same as that at c in Fig[ 8[ Again\
the major di}erence in these basic states is in the upper
~ow cell and interface[ With a pulse disturbance on Tp\
the dynamic response of zone length for these basic states
is demonstrated in Fig[ 02[ Apparently\ none of them is
stable ^ at least no steady state can be achieved within 399
s[ Much longer integration time may require to examine
the stability of these states[ Again\ we were unable to
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Fig[ 3[ Dynamic response of the zone length to the pulse change on the heater temperature[ The initial conditions are from the basic
states of Fig[ 2[

obtain a steady state in a reasonable CPU time[ The
reason is explained in Fig[ 03[ As illustrated in Fig[ 03
the growth rate for all the cases is oscillatory periodically
with time\ and its amplitude does not decay to zero[ Due
to the oscillatory nature\ the step size for integration
needs to be small for accuracy[ In fact\ more than 29 999
time steps "variable step size# are required for all the cases
in Fig[ 03[ It should be pointed out that there may be
stability changes between a? and a\ as well as c and c?
"stable# in Fig[ 01[ One way to monitor the stability
changes\ based on the linear stability theory\ is to monitor
the sign change of the determinant of the Jacobian during
Newton|s iterations ð13Ł[ However\ this approach may
fail when a Hopf bifurcation occurs[ Furthermore\ the
linear stability theorem can only be applied for an in_ni!
tesimal disturbance[ For a _nite disturbance\ the stability
could be di.cult to examine[ Furthermore\ in the present
cases even if some of the states may be stable\ they are
still very easy to be excited by any thermal environment
changes[ In other words\ striation in the grown crystal
can be easily induced[ During crystal growth experiments\
it is observed that the ~ow and interfaces are not stable
when the upper interface is nearly ~at[ In such a case the
upper ~ow cells are much more unstable\ and can easily
move up and down or left and right periodically[ This
is consistent with the calculated results[ Unfortunately\
three!dimensional ~ow is always observed during crystal
growth experiments when the ~ow is unstable[ Further!

more\ it is still not clear yet whether the three!dimensional
periodic ~ow is due to asymmetrical heating or inherent
~ow instability[

The response of the growth rate for these basic states
to the step change of Uheater is also very interesting[ As
shown in Figs 04Ð06\ the growth rate is also oscillatory
periodically[ For all of the cases\ the upper ~ow cell "from
points bÐe# is moving back and forth horizontally ^ the
period is about 1[2 s[ Again\ since the integration time is
less than 14 s\ the _nal states of these responses are still
unknown[ Nevertheless\ the oscillatory ~ow patterns and
growth rate indicate that the oscillatory features of the
basic states aÐc can be excited easily[ Finally\ it should
be pointed out that the basic state c? in Fig[ 01 is stable\
and it could achieve a steady state smoothly when the
same disturbance is imposed\ even though its zone length
and associated Ra are much larger[ In other words\
in the present system\ a less stable basic state does
not need to have a high Ra[ Muller and Neumann ð14\
15Ł also observed similar phenomena in their horizontal
zone melting experiments of InSb[ Flow "temperature#
oscillation were observed for intermediate values of the
Rayleigh number[

4[ Conclusions

"0# A fully transient model\ which simulates axi!
symmetric unsteady!state ~uid ~ow\ heat transfer\
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Fig[ 4[ Dynamic response of the growth rate to the pulse change on the heater temperature[ The initial conditions are from the basic
states of Fig[ 2[

and interface shapes simultaneously\ is used to study
the dynamic behavior of the vertical zone!melting
growth of NaNO2 crystals[ A _nite!volume:Newton
method with an implementation of the pseudo
arclength continuation is used to obtain initial basic
states for time integration[ The integration of the
di}erential:algebraic equations resulted from the
_nite!volume formulation is accomplished by ILU"9#
preconditioned DASPK solver[ The pulse dis!
turbance of the peak heater temperature and the step
change of the heater moving speed are both
considered[

"1# When the system is studied using the gravity as a
parameter\ the stability of the basic states obtained

from the same solution family can be examined by a
pulse input of the peak heater temperature[ For the
stable case\ the system could remain at its original
state[ On the contrary\ for unstable cases\ the system
could run away from their original states\ and eventu!
ally approach to the stable basic state[ More inter!
estingly\ for the unstable basic states\ the dynamic
response of the ~ow and the growth rate to the pulse
or the step disturbance is oscillatory periodically[
Furthermore\ the upper ~ow cells seem to be more
unstable due to the unstable thermal con_guration[
This is consistent with the observation during crystal
growth experiments[

"2# For a shorter zone at a lower heater temperature\ no
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Fig[ 5[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state a of Fig[ 2 to the step
change on the heater moving speed Uheater[

bifurcation is observed[ For such a case\ the system
is quite stable\ and a new steady state can be achieved
smoothly when a step change on the heater moving
speed is applied[ The new steady state can be approxi!
mated by the pseudo steady!state model very well[

"3# Similar bifurcation also exists when the solution fam!
ily is tracked using the peak heater temperature as
the parameter[ However\ for the basic states chosen\
none of them is stable in this study[ The ~ow patterns
and the growth rates are all changing with time
periodically[ The oscillatory ~ow only occurs at inter!
mediate values of the Rayleigh number in this study[

The ~ow is stable at a smaller or a larger Rayleigh
number[
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Fig[ 6[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state b of Fig[ 2 to the step
change on the heater moving speed Uheater[
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Fig[ 7[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state c of Fig[ 2 to the step
change on the heater moving speed Uheater[
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Fig[ 8[ E}ect of gravity levels on the zone length ^ Tp � 249>C[
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Fig[ 09[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state c of Fig[ 8 to the step
change on the heater moving speed Uheater[
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Fig[ 00[ Comparison of the steady!state solution from the fully transient model with that from the pseudo steady!state model ð00Ł[
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Fig[ 01[ E}ect of peak heater temperature on the zone length under normal gravity ^ point a? is the same as the point c in Fig[ 8[
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Fig[ 02[ Dynamic response of the zone length to the pulse change on the heater temperature[ The initial conditions are from the basic
states of Fig[ 01[
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Fig[ 03[ Dynamic response of the growth rate to the pulse change on the heater temperature[ The initial conditions are from the basic
states of Fig[ 01[
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Fig[ 04[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state a of Fig[ 01 to the step
change on the heater moving speed Uheater[
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Fig[ 05[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state b of Fig[ 01 to the step
change on the heater moving speed Uheater[
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Fig[ 06[ Dynamic response of the growth rate and the associated ~ow patterns and isotherms of the basic state c of Fig[ 01 to the step
change on the heater moving speed Uheater[
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