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Abstract

Dynamic behavior of heat transfer, fluid flow, and interfaces in the vertical zone-melting (VZM) crystal growth is
studied numerically. The model, which is governed by axisymmetric unsteady-state momentum and heat transfer and
interface balance in the system, is solved by a robust finite-volume method. Single crystal growth of NaNO; in a
computer-controlled transparent multizone furnace is simulated as examples. The effects of gravity levels and heater
temperature are considered. Multiple steady states obtained at stationary cases are used as initial conditions to illustrate
the transient response and the stability of the VZM crystal growth to the pulse and step changes in thermal environments.
For unstable cases, periodically oscillatory flow and growth rate occurring at intermediate values of the Rayleigh number
are observed. The upper flow cells beneath the feed front seems to be responsible to the instability, and this is consistent
with the observation during crystal growth experiments. For stable cases, a steady state can be achieved smoothly, and
the calculated results are in good agreement with the ones from a pseudo steady-state model. © 1998 Elsevier Science
Ltd. All rights reserved.

Nomenclature R, radius of crystal

a width parameter in T, t time

C, specific heat T temperature

e. unit vector in z-direction T, ambient temperature distribution
f residual vector T,, background ambient temperature
g gravitational acceleration T, melting point

h  heat transfer coeflicient T, peak heater temperature

h, height of growth front u r-component of velocity

h, height of feed front Uheaer  heater moving speed

I flux through the CV faces U, ampoule pulling speed

k thermal conductivity v z-component of velocity

L length of ampoule V' volume

n unit normal vector

Pr  Prandtl number, v/a

r cylindrical coordinate

Ra Rayleigh number, frR2G(Tmax — Tiw)/ vt
R, radius of ampoule
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x solution vector
z cylindrical coordinate.

Greek symbols

o thermal diffusivity

Pt thermal expansion coefficient
& emissivity

curvilinear coordinate

v kinematic viscosity, u/pr.
viscosity

curvilinear coordinate

density

=

T o=
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o Stefan-Boltzmann constant
Y stream function
w vorticity.

Subscripts

a ampoule

f feed

¢ crystal

L liquid or melt
m melt

max maximum
min  minimum
S solid.

1. Introduction

Modern electronics and communication are based on
various devices in microscale, and the reliability of these
devices is strongly affected by single crystal substrates.
As it is, the homogeneity of the electrical (or optical)
properties on microscale is required for device fabri-
cation. It is well known that the convection in the melt
during the production of these crystals can affect the
crystal quality significantly. Particularly, unstable crystal
growth conditions can lead to flow induced striation, and
thus inhomogeneity, in the grown crystal. Accordingly,
heat (mass) transfer and fluid flow during crystal growth
have received considerable research attention in the past
two decades. To control the crystal growth effectively,
understanding of the process dynamics is necessary.

The vertical zone-melting (VZM) technique [1] is one
of the most important processes for crystal growth and
purification, i.e., zone refining. In the VZM process, crys-
tal growth and zone-refining take place as the molten
zone is traveled with a ring heater. Owing to the radial
heating, strong buoyancy induced natural convection
could be induced. Since the melt near the upper melt/solid
interface is cooler, the unstable thermal convection may
be of importance. Furthermore, accompanied by melting
and solidification phenomena, the dynamic responses of
the process to the changes on thermal environments could
be very complicated.

Even though the VZM has been used to refine and to
grow various single crystals for years [2-4], not many
theoretical studies have been reported. Some of these
studies are restricted to one-dimensional diffusion models
[S, 6] in which heat transfer is neglected. There are only
a few two-dimensional models [7-9] that calculated con-
ductive thermal fields in the VZM crystal growth, but
crystal growth and fluid flow were not considered.
Recently, Apanovich and Ljumkis [10] simulated steady-
state convective heat and mass transfer in the traveling
solvent method (TSM) (a variant of VZM) for the crystal
growth of a low Prandtl-number material, but the
ampoule was neglected. Land and Yang[11] used a finite-

volume/Newton method with an implementation of
pseudo arc-length continuation to study the pseudo
steady-state VZM growth of NaNO;, in which multiple
steady states were also observed. More interestingly, it
was observed that the bifurcation of solutions is
accompanied by the inversion of the upper interface.
Lan and Yang also extended the simulation to the mass
transfer and constitutional supercooling in the TSM
growth of CdTe crystals from Te solution [12]. However,
dynamic behavior of the VZM process has not yet been
reported. Even though in most cases the process could
achieve a pseudo steady-state very quickly after the crys-
tal growth starts, at the initial stage of crystal growth
and the onset of unstable convection, the process is still
dynamic in nature. In other words, a pseudo steady-
state model (PSSM) may not be adequate to describe the
system.

The main purpose of this paper is to study the dynamic
behavior of VZM crystal growth from various basic
states. Time evolution of axisymmetric flow structures
and growth rates will be illustrated through computer
simulation. Some of the results may also give some expla-
nations for the phenomena observed during crystal
growth experiments. The VZM growth of NaNO; in a
transparent multizone furnace [13] will be used as exam-
ples. Although unsteady-state three-dimensional flow
were observed at some growth conditions in our crystal
growth experiments, axisymmetric results could still be
useful, and provide some conservative prediction of the
instability. Moreover, since NaNO; is a high Prandtl-
number material (Pr =9.2), the interaction of thermal
convection and interface shapes, which is interesting to
us, is expected to be significant.

2. Mathematical formulation

The VZM growth of NaNO; single crystals is simulated
using a transient model. If heating is axisymmetric, the
physical domain for the feed, the melt zone, the crystal,
and the ampoule can be taken as shown in Fig. 1. As it
is, it may be treated as a two-dimensional model. It
should be pointed out that three-dimensional flow was
observed in some growth conditions. However, cal-
culations of three-dimensional unsteady flow in this
moving boundary problem are time consuming, and
beyond the capability of present approach. The RHS of
Fig. 1 shows an effective ambient temperature dis-
tribution for computation. During crystal growth exper-
iments, this temperature distribution is assigned to the
inner wall of the transparent furnace. The flow and tem-
perature fields, as well as the shapes of the feed front (the
feed/melt interface, /i/(r, 7)) and the growth front (the
melt/crystal interface, h.r,t)), are represented in cyl-
indrical coordinate system (r, z).

In this report, the melt is assumed incompressible and
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Fig. 1. Schematic sketch of the vertical zone-melting (VZM)
crystal growth process; the RHS is an effective ambient tem-
perature distribution.

Newtonian, while the flow is laminar. The Boussinesq
approximation is also adopted. If the stream function ¥/
and vorticity w are defined in terms of radial (1) and axial
(v) velocities as [14] :

w1y 1
T pur oz’ U_p,j‘ér 1
and

o @ )
w_ﬁz or (

the governing equations in the conservative-law form (or
the so-called divergence form) for unsteady-state fluid
flow and heat transfer in the system can be written as
follows :

Equation of motion

do (o) 2l
_pL81+8r roz) oz\r or
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where p is the viscosity, p; the density, C,, the specific heat,
and k; the thermal conductivity of phase i ; i represents the
melt (L), the crystal or feed (S), and the ampoule (a).
Also g is the gravitational acceleration and f the thermal
expansion coefficient of the melt. Also, the associated
Rayleigh number Ra can be defined as BrR2g(Tax — Ti)/
(va), where T, is the maximum temperature in the zone,
T, the melting point, v = u/p,, and o = k;/(p,.C,.). All
the physical properties used in Ra are obtained at T,
Furthermore, since 7., is unknown a priori, Ra should
be obtained from the solution.
The thermal boundary conditions are as follows :

(1) Along the centerline,
oT/or =0 (6)

due to symmetry.

(2) At the feed (f) and crystal (c) growth fronts, the
interfacial energy balance is
oh;
k(n~VT)|,—k(n-VT)|L+pSAH<0—;‘ + U0>n'e: —0,
i=(f0) (7

where n is the unit normal vector pointing into the
feed or the crystal and AH the heat of fusion. The
temperature at feed and growth fronts is set to the
equilibrium melting point of the crystal:

T|,=T|. = T, @®)
(3) At the material/ampoule interface, the energy bal-
ance is
km-VT);—k(m-VT)|, =0, i=(fLc) )

where n is the unit normal vector pointing into the
ampoule.
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(4) Heat transfer from the system to the ambient is by
both radiation and convection according to the
energy balance along the ampoule surface :

—k,mVT) = WT—T,)+e,0(T*—T* (10)

where / is the heat transfer coefficient, ¢, the thermal
emissivity of the ampoule, ¢ the Stefan—Boltzmann
constant, and T, the effective ambient temperature.

(5) At the top of the sample, an adiabatic condition is
used,

n-v7=0. (11)

Heat loss from the top surface can be added if neces-
sary.

Heat exchanges between the surrounding (furnace) and
the ampoule are dictated by the effective ambient tem-
perature T,(z) specified along the zone length. The effec-
tive ambient temperature distribution due to the furnace
is specified as follows :

Tu(Z: t) = (Tp_Taa;) exp{—[(z—zp)/a]z}—l—ﬂw (12)
and
Zp = ZpO+ Uheater (13)

where T, and T, are the peak and background tem-
peratures, respectively, the parameter « is related to the
width of the distribution, and z, is the position of T,
Also, z, is the initial position of T,,. The heating profile
according to equation (12) can be generated in the com-
puter-controlled multizone furnace easily [13].

The fluid-flow boundary conditions are as follows :

(1) Along the centerline
Y=0, vo=0 (14)

where i/ is set to zero as a reference.
(2) At the feed and growth fronts,

V= %PS Uyr?
ou Ov
with
u=0, v="Ups/p;. (16)
Also, U, is negative here if the ampoule is pulled
downwards.
(3) At the melt/ampoule interface,
1 5 ou v
l//ZEPSUORL'a w—g_a 17

with

u=0, v="Ups/p, (18)

where R. is the crystal radius (see Fig. 1).

3. Solution procedure

The above governing equations and boundary con-
ditions are transformed into those in terms of general
(nonorthogonal) curvilinear coordinates (1, £) which fit
all the interfaces, as shown in Fig. 2. In this way, all the
boundary conditions can be treated accurately, as already
described previously [15].

The equation of motion, the stream equation, and the
energy equation [equations (3)—(5)] are discretized by
employing a finite-volume method. The physical domain,
in (r, z), is subdivided into a finite number of contiguous
volumes (CVs) of volume ¥, which are bounded by cell
faces located about halfway between consecutive nodal
points. For any CV with volume ¥ in this domain can be
transformed into a computation domain (1, £) with a CV
of volume V’, and dV = JdV’, where J is the Jacobian
of coordinate transformation (J = r,z. —r.z,). Now, the
integration of these equations over the CV can proceed
as follows:

J [equations (3)-(5)]d V. (18)

After the Gauss theorem is applied, the above equation
can be transformed into surface integrals (fluxes) over
the surface of the CV. The resulting balance equations
for each CV can then be expressed as

0
Ieast - Iwes( + Inorth - Isoulh + J <_ b’ 7¢
- ot

+d>Jdnd£ =0

19)
and
0| | N[ (0
E rz N E r/~i+ j|:(’§¢’7_”1¢5) <at mi)

0
Gy =2, (5:

)} (20)

where ¢ is the field variables (i.e., w, ¢, and T), d the
source terms in the governing equations, 5" the cor-
responding coefficient for time derivative of ¢, and I,
represents the total flux of ¢ across the face i of the CV.
The second term on the RHS of equation (20) is due to
the moving coordinate in the physical domain. Equation
(19) involves no approximation and represents the finite-
volume equations of the differential equations. Numeri-
cal evaluation of the different terms in equation (19)
requires the calculation of geometrical factors for the CVs
and a discretization scheme for interpolating quantities at
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Fig. 2. A nonorthogonal body-fitted coordinate system used for computation: (a) physical domain; (b) computational domain. The
heavy lines indicate the interfaces in the computational domain.

the cell faces from their adjacent nodal values. The details
of the discretization scheme can be found elsewhere [15].
In addition, the boundary conditions are discretized by
second order finite differences.

After the discretization for both governing and bound-
ary conditions, a set of differential/algebraic equations
(DAES) can be obtained :

dx
f<x,a,t> =0 @n

where x" = (, w, T, hy, h,). The formulation of the DAEs
is then completed by specifying an initial condition
(t = 0) on the stream function, vorticity, temperature,
and the interface shapes. The solution at a stationary
state, in which the ampoule and the ambient temperature
profile are both kept stationary, is taken as the initial
condition. The stationary state is solved by Newton’s
method, and the detailed description can be found else-
where [11]. To solve the DAEs, a fully implicit time inte-
gration code DASPK [16] (a variant of DASSL [17]) is
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used. In the DASPK code, nonlinear equations involved
in each time step are solved by an inexact Newton method
based on the Krylov subspace iterative approach [18].
The incomplete LU decomposition without fill-in
(ILU(0)) [19] of the Jacobian matrix from equation (21)
is used as the preconditioner during inexact Newton’s
iterations. The components of the Jacobian matrix J,
formed by explicit differentiation as J; = 9f;/0x;, rep-
resent the sensitivity of the residual vector to the solution
vector, and are obtained by finite-difference approxi-
mations with the consideration of the sparse structure of
J [20]. Since the Krylov subspace method is adopted in
the solution phase, the choice of the preconditioner is
crucial to the success of DASPK. In addition, the con-
sistence of the initial condition is also sensitive to this
DAE solver.

4. Results and discussion
The calculated results are based on the physical proper-

ties and some input parameters in Table 1. According to
the table, the Prandtl number (Pr = uC,,/k,) for NaNO;

Table 1
Physical properties and some input parameters [11]

NaNo,
T, = 306.8°C
AH=182] g™

k,=5.65x10"3+33.5(T—230)x 10~7 W cm~' °C""
k, =5.65x1073+44.7(T—T,)x 10~7 Wem~' °C~!
Cp, = Cp, = 1.255+2.18(T—100) x 10> J g~ °C~"!
1=0.0302—1.533x 10~4T—T,) gem " s~
Br=6.6x10"*°C"!

ps=2.118gcm™?

g =1.904 gcm™?

Ampoule (glass)
k,=0.035Wcm~'°C™!
C,, =0.188Jg ' °C™
p.=22gcm™3
e, =0.7

Some input parameters

R.=0.725cm
R,=09cm
L=10cm

Zy = 5.1 cm

T, =350 or 380°C

T,, = 180°C

a=1.6cm
h=16x10"2Wcm 2°C™!
Uy=0cmh™'

Unearer = 1 cm h!

is rather high, i.e., around 9.2 at the melting point
(306.8°C). Before calculated results are presented, mesh
refinements are also performed to examine discretization
errors. Two meshes are tested in the study. The coarser
mesh has 26 x 76 grid points, which leads to totally 3190
nonlinear equations. The finer mesh, as shown in Fig. 2,
has 36 x86 grid points and has up to 5520 nonlinear
equations. In details, the grids are 31 x 21 in the feed,
31 x 41 in the melt, 31 x 21 in the crystal, and the rest of
grids in the ampoule. Calculated results (flow patterns,
isotherms, and the growth rate curve) for a case under
normal gravity (7, = 350°C and Upeyer = 1 cmh™") based
on the two meshes are very close to each other (the
difference on the maximum of temperature is within 1%).
Since a calculation with the finer mesh (if the system is
stable) takes only about 30 CPU minutes in HP9000/735
workstation, the finer mesh is chosen for all the cal-
culations here.

Before transient results are presented, the initial con-
ditions are discussed first. Figure 3 shows the variation of
zone length (measured at the centerline) with the gravity
level ; the solutions from the pseudo steady-state model
(PSSM) [11] is indicated by the dashed-line. As shown,
the zone length increases rapidly with the increasing grav-
ity. Since the gravity is the only driving force for con-
vection in the melt, Fig. 3 can be seen as the effect of
convection on the molten zone size. More interestingly,
there are multiple steady states near the gravity level
around 0.08 g. The corresponding flow patterns and iso-
therms are also illustrated ; the upper flow cell is antic-
lockwise while the lower one is clockwise in direction. The
values for the maximum temperature (7,,,), maximum
(Y max) and minimum (,,,;,) stream functions are listed in
Table 2. The associated Ra number is also included for
reference. In fact, as discussed in the previous report [11],
the bifurcation is accompanied by the inversion of the
upper melt/solid interface. Similar bifurcation behavior
can be found in Czochralski crystal growth [21], in which
the cold boundary (the melt/crystal interface) is on the
top. We have also conducted the calculations for the cases
with ‘fixed’ interfaces. However, no similar bifurcation
behavior is observed. Since the dynamic response of the
multiple steady states to the change of thermal environ-
ments could be interesting, solutions (or the so-called
basic states) a—c in Fig. 3 are chosen as initial conditions.

The dynamic response of the basic states a—c is illus-
trated first for a pulse disturbance. The disturbance is
implemented through a pulse increase on the peak heater
temperature (7,(f) = T,(0)+5sin(¢) for < m). The
dynamic response of zone length for the basic states a—c
is shown in Fig. 4. As shown, the basic state ¢ still remains
at its original state, and is not affected by the disturbance
much. On the contrary, for the states a and b, they do
not stay at their original states, and their zone length is
changing with time until a new steady state is reached.
Interestingly, the new stable state appears to be the basic
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Fig. 3. Effect of gravity levels on the zone length ; T}, = 380°C.

state c. More importantly, the response of the growth
rate (Fig. 5) are oscillatory for both states a and b. In
fact, the cyclic melting (dA/df <0) and growth
(dh./dt > 0) could be responsible to the striation during
crystal growth. Although the amplitude of the oscillation
for both basic states a and b decays to zero eventually,
the oscillation can sustain up to 400 s. The detailed
response of the growth rate at the first 100 s is also
highlighted in the same figure. It can be clearly seen that
the growth rate for the state c is not oscillatory at all, and
it returns to zero in 20 s. The Ra for all of the cases is
about 1.8 x 10°, which is much smaller than the critical
Ra (=1 x107) reported for the simulated VZM system
using water as a model fluid [22]. The response of a basic
state at higher Ra in Fig. 3 is similar to the basic state c.

The dynamic response of these basic states to the step

change of the heater moving speed (to start up crystal
growth) may also be interesting ; Uy, 1S changed from
0 to 1 cm h™' upwards. Figure 6 shows the response of
the growth rate for the state a. As shown, the system does
not respond until the change in the thermal environments
is substantial. Interestingly, as the system senses the
change, the response, for both the growth rate and the
flow patterns, is oscillatory with time periodically. The
oscillation pattern is similar to that in Fig. 5. From the
associated flow patterns and isotherms indicated from
points b—f (a period), it is clear that the periodic growth
or melting is mainly due to the oscillatory flow. From the
flow patterns, it can be seen that the upper flow cell moves
back and forth horizontally from b—f, and the lower cell
is induced to move up and down. The unstable upper
cell, presumably, may be due to the unstable thermal
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Table 2
Calculated stream function, and Ra

Prin (X 10%) Py (x 109

Figures  [gs™'] [gs™"] Toax [°C]  Ra(x107°)
Fig. 3a —1.78 3.13 345.17 1.813
Fig. 3b —1.89 5.34 344 .82 1.797
Fig. 3¢ —1.85 11.8 344.41 1.778
Fig. 6b —1.99 4.27 344.65 1.789
Fig. 6¢ —2.42 1.92 344.24 1.769
Fig. 6d —2.22 0.51 344.51 1.782
Fig. 6e —1.35 11.5 344.39 1.776
Fig. 6f —1.98 4.16 344.61 1.787
Fig. 7b —1.71 1.07 345.17 2.043
Fig. 7¢c —2.01 4.70 344.60 1.786
Fig. 7d —1.52 9.71 344.67 1.790
Fig. 7e —1.74 10.0 345.00 1.805
Fig. 8b —1.58 3.24 344.82 1.834
Fig. 8¢ —1.58 3.23 345.62 1.835
Fig. 9a —2.24 0.02 320.47 0.194
Fig. 9b —2.91 0.42 320.24 0.381
Fig. 9¢c —2.83 1.90 320.37 0.641
Fig. 10b  —3.15 1.08 320.20 0.633
Fig. 10c —3.57 0.27 320.10 0.629
Fig. 12a —3.32 4.00 325.41 0.879
Fig. 12b —3.46 4.09 325.29 0.873
Fig. 12¢ —4.13 10.6 324.83 0.852
Fig. 15b —4.08 4.12 324.36 0.830
Fig. 15¢ —3.29 9.50 324.52 0.837
Fig. 15d —4.04 4.40 324.26 0.825
Fig. 15e —3.29 9.56 324.48 0.836
Fig. 16b —4.14 5.28 324.37 0.830
Fig. 16c —3.35 10.0 324.56 0.839
Fig. 16d —4.10 5.52 324.29 0.827
Fig. 16e —3.35 10.1 324.52 0.837
Fig. 17b —4.34 7.79 324.28 0.826
Fig. 17c —3.65 17.2 324.54 0.838
Fig. 17d —4.31 8.22 324.26 0.825
Fig. 17e —3.67 17.0 324.53 0.838

configuration ; the cold boundary (the feed front) is on
the top. Isotherm variation due to the flow is also very
obvious. However, due to the short growth time, the
change on the interfaces are invisible. Since the heater is
moved upward, the mean growth rate should increase
upwards as well; di./dt = U, if a steady state is
achieved. Unfortunately, due to the oscillatory behavior
while we need to maintain the accuracy of the solution
at each time step, we were not able to obtain a steady-
state solution in a reasonable CPU time. Again, the
dynamic response of the basic state b also exhibits a
similar behavior (Fig. 7), but as is the case in Fig. 5 the
amplitude of the periodic oscillation is smaller. Fur-
thermore, the upper cell now moves up and down rather
than left and right. The period for both cases a and b is

about 6.8 s. On the contrary, the basic state c is stable,
and the oscillatory behavior does not exist. As shown in
Fig. 8, the system achieves a steady state smoothly. The
feed front changes from concave to flat, while the growth
front from slightly convex to concave. Furthermore, the
new state c at Fig. 8 is consistent with the solution from
a PSSM (point ¢’ in Fig. 3). In fact, since the basic state
¢’ in Fig. 3 is a unique stable solution at the growth rate
of 1 cm h™', we anticipate that it may also be the final
steady state for the basic states a and b to the step change
on Uhcalcr'

When the molten zone is short at a lower heater tem-
perature (7, = 350°C), no bifurcation occurs with the
increasing gravity (Fig. 9). In fact, the Ra for the cases in
Fig. 9 is less than 1 x 10° (see Table 2). The step response
of the basic state ¢ (at 1 g) is shown in Fig. 10. Again,
since it is stable, a steady state is smoothly achieved, in
which dh./dt = U, Interestingly, an inverse response
of the growth rate (from points a to b in Fig. 10) is
observed. Indeed, in such a complicated system there are
many associated time constants and their values may
vary significantly. For example, the time constant for
heat conduction is quite different from that for fluid flow.
Therefore, as the heater moves upwards, the faster mode
(convective heat transfer) tends to melt back the growth
front (negative dh./df). However, as the heater moves
upwards more, the slower mode (heat conduction) can
then respond more significantly to exhibit the positive
growth rate. Figure 11 gives a simple comparison of the
steady state results from Fig. 10 and the PSSM [11]. As
shown, the PSSM is a good approximation to the system.
The smaller difference in the stream function is simply
due to the different boundary conditions used. Further-
more, the calculated flow patterns and interface shapes
shown in Fig. 11 are also compared with those from the
laser light-cut technique, and they are in good agreement.
The detailed comparison is discussed elsewhere [13].

Similar bifurcation behavior can also be obtained by
tracking the solution family using 7}, as a parameter. As
shown in Fig. 12, under normal gravity condition
multiple steady states also appear for both stationary and
growth cases around 7}, = 1.0857,,. Also, the bifurcation
structure is more complicated, and there are four turning
points [23]. The zone length for both stationary and
growth cases are very close to each other for a wide range
of T, except for the range with multiple steady states.
The flow patterns and isotherms for multiple steady states
at T, = 1.0857, (labeled by a—c) are also illustrated. The
basic state at a’ is the same as that at c in Fig. 9. Again,
the major difference in these basic states is in the upper
flow cell and interface. With a pulse disturbance on T,
the dynamic response of zone length for these basic states
is demonstrated in Fig. 13. Apparently, none of them is
stable ; at least no steady state can be achieved within 400
s. Much longer integration time may require to examine
the stability of these states. Again, we were unable to
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Fig. 4. Dynamic response of the zone length to the pulse change on the heater temperature. The initial conditions are from the basic

states of Fig. 3.

obtain a steady state in a reasonable CPU time. The
reason is explained in Fig. 14. As illustrated in Fig. 14
the growth rate for all the cases is oscillatory periodically
with time, and its amplitude does not decay to zero. Due
to the oscillatory nature, the step size for integration
needs to be small for accuracy. In fact, more than 30 000
time steps (variable step size) are required for all the cases
in Fig. 14. It should be pointed out that there may be
stability changes between a’ and a, as well as ¢ and ¢’
(stable) in Fig. 12. One way to monitor the stability
changes, based on the linear stability theory, is to monitor
the sign change of the determinant of the Jacobian during
Newton’s iterations [24]. However, this approach may
fail when a Hopf bifurcation occurs. Furthermore, the
linear stability theorem can only be applied for an infini-
tesimal disturbance. For a finite disturbance, the stability
could be difficult to examine. Furthermore, in the present
cases even if some of the states may be stable, they are
still very easy to be excited by any thermal environment
changes. In other words, striation in the grown crystal
can be easily induced. During crystal growth experiments,
it is observed that the flow and interfaces are not stable
when the upper interface is nearly flat. In such a case the
upper flow cells are much more unstable, and can easily
move up and down or left and right periodically. This
is consistent with the calculated results. Unfortunately,
three-dimensional flow is always observed during crystal
growth experiments when the flow is unstable. Further-

more, it is still not clear yet whether the three-dimensional
periodic flow is due to asymmetrical heating or inherent
flow instability.

The response of the growth rate for these basic states
to the step change of U, is also very interesting. As
shown in Figs 15-17, the growth rate is also oscillatory
periodically. For all of the cases, the upper flow cell (from
points b—e) is moving back and forth horizontally; the
period is about 2.3 s. Again, since the integration time is
less than 25 s, the final states of these responses are still
unknown. Nevertheless, the oscillatory flow patterns and
growth rate indicate that the oscillatory features of the
basic states a—c can be excited easily. Finally, it should
be pointed out that the basic state ¢’ in Fig. 12 is stable,
and it could achieve a steady state smoothly when the
same disturbance is imposed, even though its zone length
and associated Ra are much larger. In other words,
in the present system, a less stable basic state does
not need to have a high Ra. Muller and Neumann [25,
26] also observed similar phenomena in their horizontal
zone melting experiments of InSb. Flow (temperature)
oscillation were observed for intermediate values of the
Rayleigh number.

5. Conclusions

(1) A fully transient model, which simulates axi-
symmetric unsteady-state fluid flow, heat transfer,
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and interface shapes simultaneously, is used to study
the dynamic behavior of the vertical zone-melting
growth of NaNOj crystals. A finite-volume/Newton
method with an implementation of the pseudo
arclength continuation is used to obtain initial basic
states for time integration. The integration of the
differential/algebraic equations resulted from the
finite-volume formulation is accomplished by /L U(0)
preconditioned DASPK solver. The pulse dis-
turbance of the peak heater temperature and the step
change of the heater moving speed are both
considered.

When the system is studied using the gravity as a
parameter, the stability of the basic states obtained

t (s)

Fig. 5. Dynamic response of the growth rate to the pulse change on the heater temperature. The initial conditions are from the basic
states of Fig. 3.

from the same solution family can be examined by a
pulse input of the peak heater temperature. For the
stable case, the system could remain at its original
state. On the contrary, for unstable cases, the system
could run away from their original states, and eventu-
ally approach to the stable basic state. More inter-
estingly, for the unstable basic states, the dynamic
response of the flow and the growth rate to the pulse
or the step disturbance is oscillatory periodically.
Furthermore, the upper flow cells seem to be more
unstable due to the unstable thermal configuration.
This is consistent with the observation during crystal
growth experiments.

(3) For a shorter zone at a lower heater temperature, no
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Fig. 6. Dynamic response of the growth rate and the associated flow patterns and isotherms of the basic state a of Fig. 3 to the step
change on the heater moving speed Uyeqier-

4)

bifurcation is observed. For such a case, the system
is quite stable, and a new steady state can be achieved
smoothly when a step change on the heater moving
speed is applied. The new steady state can be approxi-
mated by the pseudo steady-state model very well.

Similar bifurcation also exists when the solution fam-
ily is tracked using the peak heater temperature as
the parameter. However, for the basic states chosen,
none of them is stable in this study. The flow patterns
and the growth rates are all changing with time
periodically. The oscillatory flow only occurs at inter-
mediate values of the Rayleigh number in this study.

The flow is stable at a smaller or a larger Rayleigh
number.
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